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1 Examples of bases

Last time we studied bases of vector spaces. Today we’re going to give some examples of bases.

Example 1.1. Consider the vector space P2 — the space of polynomials with degree less than

or equal to 2. Let’s consider the following 3 vectors in this vector space:

u1 = t2 + 1, u2 = t + 1, u3 = t− 1.

Let’s determine whether it is a basis or not. We have to check 2 conditions:

Spanning set To check that these vectors form a spanning set for P2 we should take arbitrary

vector from P2 and try to express it as a linear combination of the vectors from the basis.

Let’s take arbitrary polynomial at2 + bt + c:

at2 + bt + c = x(t2 + 1) + y(t + 1) + z(t − 1) = xt2 + (y + z)t + (x + y − z).

So, we can see that this is equivalent to the following system of linear equations, which

we will try to solve:





x = a

y + z = b

x + y − z = c

subtract the 1st eq. from the 3rd oneÃ





x = a

y + z = b

y − z = c− a

subtract the 2nd eq. from the 3rd oneÃ





x = a

y + z = b

− 2z = c− a− b
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So, we see that z = 1
2
(a + b− c), y = 1

2
(b + c− a), and x = a. So, we got the expression

for arbitrary polynomial as a linear combination of given:

at2 + bt + c = a(t2 + 1) +
1

2
(b + c− a)(t + 1) +

1

2
(a + b− c)(t− 1).

So, this system is a spanning set.

Linear independence To check that these vectors are linearly independent we form a linear

combination which is equal to 0:

x(t2 + 1) + y(t + 1) + z(t− 1) = 0 ⇔ xt2 + (y + z)t + (x + y − z) = 0.

This is equivalent to the following linear system:





x = 0

y + z = 0

x + y − z = 0

subtract the 1st eq. from the 3rd oneÃ





x = 0

y + z = 0

y − z = 0

subtract the 2nd eq. from the 3rd oneÃ





x = 0

y + z = 0

− 2z = 0

So, we see that the only solution for this system is x = 0, y = 0, and z = 0. Thus, these

vectors are linearly independent.

So, since both properties hold for this system of vectors, we deduce that this system is a basis.

Example 1.2. Consider the vector space P2 — the space of polynomials with degree less than

or equal to 2. Let’s consider the following 3 vectors in this vector space:

u1 = t2 + t + 2, u2 = t2 + 1, u3 = t + 1.

Let’s determine whether it is a basis or not. We have to check 2 conditions:

Spanning set To check that these vectors form a spanning set for P2 we should take arbitrary

vector from P2 and try to express it as a linear combination of the vectors from the basis.

Let’s take arbitrary polynomial at2 + bt + c:

at2 + bt + c = x(t2 + t + 2) + y(t2 + 1) + z(t + 1) = (x + y)t2 + (x + z)t + (2x + y + z).
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So, we can see that this is equivalent to the following system of linear equations, which

we will try to solve:




x + y = a

x + z = b

2x + y + z = c

subtract the 1st eq. mult. by 2 from the 3rd one,
and subtract the 1st eq. from the 2nd oneÃ





x + y = a

− y + z = b− a

− y + z = c− 2a

subtract the 2nd eq. from the 3rd oneÃ





x + y = a

− y + z = b

0 = c− a− b

So, we see that this system has no solution if c− a− b 6= 0. For example, if a = 1, b = 1,

c = 1, then c− a− b = 1− 1− 1 = −1 6= 0, so the vector at2 + bt + c = t2 + t + 1 can not

be expressed as a linear combination of the given vectors. So we deduce, that this system

of vectors is not a basis.

Actually, here we can stop, and do not check the linear independence — we know, that

it is not a basis already!!! But we will show how to check that these vectors are linearly

dependent.

Linear independence To find whether these vectors are linearly independent or not we form

a linear combination which is equal to 0:

x(t2 + t + 2) + y(t2 + 1) + z(t + 1) = 0 ⇔ (x + y)t2 + (x + z)t + (2x + y + z) = 0.

This is equivalent to the following linear system:




x + y = 0

x + z = 0

2x + y + z = 0

subtract the 1st eq. mult. by 2 from the 3rd one,
and subtract the 1st eq. from the 2nd oneÃ





x + y = 0

− y + z = 0

− y + z = 0

subtract the 2nd eq. from the 3rd oneÃ





x + y = 0

− y + z = 0

0 = 0

So we see that this system has nonzero solution, for example (1,−1,−1). So, the linear

combination with these coefficients is non trivial and is equal to 0:

1(t2 + t + 2)− 1(t2 + 1)− 1(t + 1) = 0
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Thus these vectors are linearly dependent.

2 Dimension

Now we’ll state the following theorem about linear dependence.

Theorem 2.1 (Main lemma about linear dependence). Let u1, u2, . . . , un is a basis for

vector space V . Let m > n. Then any m vectors from V are linearly dependent.

Example 2.2. Vectors

(
1

0

)
and

(
0

1

)
form a basis for R2. So, any 3 vectors from R2 are

linearly dependent. For example we can say that

v1 =

(
2

4

)
, v2 =

(
5

2

)
, v3 =

(
0

1

)

are linearly dependent without finding a nontrivial linear combination of them.

The following corollary is one of the main results in linear algebra.

Corollary 2.3. All bases of the given vector space V have the same number of vectors.

Definition 2.4. The number of vectors in basis of V is called the dimension of V . It is

denoted by dim V .

Example 2.5. The space R2 has 2 vectors in its basis, so dimR2 = 2.

Example 2.6. The space P2 of polynomials of degree less than or equal to 2 has dimension

equal to 3, since it has a basis of 3 vectors: u1(t) = t2, u2(t) = t, and u3(t) = 1. So, dimP2 = 3.

Now we are ready to give the proofs of these main results.

Proof of the Main Lemma about linear dependence. Let we have m vectors in the V : v1, v2,

. . . , vm, and m > n, where n is dimension of V . Vectors u1, u2, . . . , un form a basis for V , so

we can express vectors vi’s as linear combinations of ui’s:

v1 = a11u1 + a12u2 + · · ·+ a1nun

v2 = a21u1 + a22u2 + · · ·+ a2nun

. . .

vm = am1u1 + am2u2 + · · ·+ amnun
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Let’s form a linear combination of vi’s which is equal to zero, and prove that it may be non-

trivial — then it will be proved that vi’s are linearly dependent.

λ1v1 + λ2v2 + · · ·+ λmvm = λ1(a11u1 + a12u2 + · · ·+ a1nun)

+ λ2(a21u1 + a22u2 + · · ·+ a2nun)

+ · · ·
+ λm(am1u1 + am2u2 + · · ·+ amnun)

By rearranging terms, we write that the same linear combination is equal to

λ1v1 + λ2v2 + · · ·+ λmvm = u1(λ1a11 + λ2a21 + · · ·+ λmam1)

+ u2(λ1a12 + λ2a22 + · · ·+ λmam2)

+ · · ·
+ un(λ1a1n + λ2a2n + · · ·+ λmamn)

In order for it to be equal to 0, we will write that coefficients are equal to 0 (since ui’s are

independent). We’ll have the system of linear equations:





λ1a11 + λ2a21 + · · · + λmam1 = 0

λ1a12 + λ2a22 + · · · + λmam2 = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λ1a1n + λ2a2n + · · · + λmamn = 0

This is a homogeneous system, and the number of equations is n, the number of variables is

m, so the number of equations is less then the number of variables (since n < m). So, it has

non-trivial solution — there exist λi’s not all equal to 0, such that linear combination of vi’s is

equal to 0. So, vi’s are linearly dependent.

Proof of the Corollary 2.3. Let we have 2 bases with different numbers of vectors, say m in the

first basis, and n in the second one. Let m > n. But by the previous theorem any m vectors

are linearly dependent. But they are in basis, so they should be independent! Contradiction

proves the corollary.
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